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Because of Euler buckling, a simple strut of length L and Young modulus Y requires a volume of material
proportional to L3f1/2 in order to support a compressive force F, where f =F /YL2 and f �1. By taking into
account both Euler and local buckling, we provide a hierarchical design for such a strut consisting of inter-
secting curved shells, which requires a volume of material proportional to the much smaller quantity
L3f exp�2��ln 3��ln f−1��.
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I. INTRODUCTION

Fractals �1� occur ubiquitously in nature and appear to
arise in many different ways; examples from the physical
and biological sciences include colloidal flocculation �2,3�,
percolation phenomena �4�, and the structure of transport
networks in organisms �5�. In the area of structural mechan-
ics, it has been claimed that the fractal morphology of trabe-
cular bone is responsible in part for its mechanical efficiency
�6�; while the complex suture patterns of ammonites of the
Jurassic and Cretaceous periods have been conjectured to
give greater strength to their shells �7,8�.

Recent theoretical work on a highly simplified model sys-
tem consisting of a brittle pressure-bearing plate has also
suggested that a fractal structure can be highly efficient when
the loading conditions are very gentle and the material very
brittle �9�. It is therefore of interest to explore other circum-
stances under which fractal design principles can lead to high
mechanical efficiency, in case there is a general theorem un-
derlying the optimal design of elastic structures under gentle
compressive loading. To this end, we consider here the buck-
ling behavior of compression members.

Consider first the classical case of an Euler strut �10� in
the form of a solid, cylindrical column of radius r0 and
length L, made from an isotropic, linear elastic material of
Young modulus Y and Poisson ratio �, and subject to a com-
pressive force F at the freely hinged ends.

We define two nondimensional parameters: f �F / �YL2�,
which is the compressive force scaled by YL2, and v
=�r0

2 /L2, which is the volume of material used, scaled by L3.
We are interested in the regime of gentle loading, by which
we mean f �1 and v�1.

Because of Euler buckling, the strut can only withstand
forces such that F��2YI0 /L2, where I0=�r0

4 /4 is the second
moment of the cross-sectional area about the neutral axis of
the beam �10,11�. Therefore the �nondimensionalized� vol-
ume of material required to withstand a load represented by
f is given by

v�0� = 2�−1/2f1/2, �1�

where we have neglected the material required to make the
freely hinged couplings at the ends of the strut. For the pur-

poses of this paper, we call the above solid strut a “genera-
tion G=0” structure, and this is written as an argument for
the volume variable v in Eq. �1�.

We note in passing that the contrast in efficiency between
compression members and tension members �for which v
� f� is a persistent theme in structural engineering. The scal-
ing of Eq. �1� plus the cost of couplings mean that efficient
structures tend to have few compression members and many
long tension members, the paradigmatic example being a tent
�12,13�.

To define a G=1 structure, we choose a hollow cylindrical
shell, which is also a classic problem in elasticity theory
�11,14�. We choose the length as always to be L, and we
denote the radius by r1,1 where the first index refers to the
“generation number” G=1 and the second index will be ex-
plained when we describe structures of higher generation
number. This G=1 structure consists of one cylinder parallel
to the compression direction, and we express this trivial fact
by n1,1=1. The thickness of the sheet of elastic material mak-
ing up the curved surface of the cylindrical shell is denoted
by s1,1, which specifically represents the volume of material
required to make a unit area of the curved surface. We call
this quantity the “material thickness” of the curved sheet. We
also introduce an “effective elastic thickness” t1,1 for the
curved sheet. For the generation 1 structure, the curved sheet
is simple in topology and uniform in thickness, and so s1,1

� t1,1. Last, we have an effective Young modulus Y1,1 and
Poisson ratio �1,1 for the sheet. For a G=1 structure Y1,1

�Y and �1,1��. In all of these expressions, the first index
refers to the generation number, and the second index will
take values from 1 up to the generation number of the struc-
ture, as will be explained in Sec. III.

Provided that t1,1�r1,1�L, the column now has a second
moment of cross-sectional area about the neutral axis given
by I1=�s1,1r1,1

3 and the volume of material used to construct
it is given by v=2�r1,1s1,1 /L2. The requirement that Euler
buckling not occur then imposes the constraint F
��2Y1,1I1 /L2 or

v � 2f1/3�t1,1/L�2/3. �2�

In contrast to the solid column, there is now the possibil-
ity of local buckling. This happens when �11,14�*robert.farr@unilever.com
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F =
2�Y1,1t1,1

2

�3�1 − �1,1
2 �

, �3�

which provides a second constraint on the structure required
to support a force F.

The generation 1 structure with the highest mechanical
efficiency �smallest value of v for a given f� is therefore
specified by

v�1� = 2�3�1 − �2�
4�2 �1/6

f2/3 �4�

with

r1,1

L
=

1

�
�3�1 − �2�

4�2 �−1/12

f1/6, �5�

t1,1

L
= �3�1 − �2�

4�2 �1/4

f1/2, �6�

and therefore t1,1�r1,1�L as assumed above.
Equation �4� represents a considerable gain in efficiency

over the solid column of Eq. �1�, but does not rival the effi-
ciency �v� f� which can be obtained for tensile loading.

We note that both here and in all subsequent sections, we
have taken a conservative approach in calculating v, by as-
suming that the structure fails when the first buckling bifur-
cation is encountered. Engineering structures �especially
shells� will often support considerably higher loads in the
post-buckling regime before catastrophic failure �11�. Al-
though such complexities are certainly of practical impor-
tance, we choose to ignore them in this investigation and try,
where possible, to obtain estimates which are upper bounds
for v.

II. COMPOSITE PLATE

When designing a plate or shell which may buckle, it is
standard engineering practice to introduce stiffening plates,
longitudinal stringers, bulkheads, or similar devices in order
to stiffen the structure and/or suppress buckling modes
�11,13�.

In this paper we take a similar approach, but redesign the
structure in a systematic and hierarchical manner, which can
be iterated in the limit f →0. We do not presume to do this in
the most efficient manner �we are almost certainly overengi-
neering the protection against many of the buckling modes
we wish to avoid� but nevertheless the design we describe
allows us to systematically change the scaling of v with f
and therefore to approach more closely the scaling which can
be achieved for a rod under tension, achieving ultimately v
� f exp�2��ln 3��ln f−1��. In the limit f →0, this is smaller
than any scaling of the form v� f� with ��1.

To proceed in this direction, consider first a simple thin,
flat plate of uniform thickness t̃, lying in the x-y plane and

made out of an isotropic elastic material of Young modulus Ỹ
and Poisson ratio �̃. Suppose furthermore that this plate may
be deformed by applied stresses, leading to stretching or
shearing of the middle plane �15�, and also possibly to out-

of-plane deflections which may be large compared to the
plate thickness. An appropriate approximation to describe the
behavior of the plate is due to von Karman �16�. In this
theory, the equilibrium behavior �given suitable boundary
conditions� can be obtained by minimizing an energy func-
tional. The elastic part of the energy �as opposed to that from
external forces� can be written as the sum of two terms �17�:
the energy US associated with stretching of the middle plane
of the plate, and a bending energy UB.

If the two-dimensional strain tensor for the middle plane
of the plate is given by e�x ,y�, then the stretching energy
will be given by �9,11,17�

US =
Ỹ t̃

2�1 − �̃2�
	 dxdy
�̃�Tr�e��2 + �1 − �̃�Tr�e2�� . �7�

Furthermore, if the plate is bent out of plane in the z direc-
tion, by an amount w�x ,y�, then the bending energy stored
will be given by �17�

UB =
Ỹ t̃3

24�1 − �̃2�
	 dxdy
�Tr�H��2 − 2�1 − �̃�det�H�� , �8�

where H is the Hessian matrix,

H�x,y� =�
�2w

�x2

�2w

�x � y

�2w

�x � y

�2w

�y2

 . �9�

Now consider the composite plate shown in the bottom part
of Fig. 1. This structure is built from three intersecting sub-
structures �as shown separately in the top three parts of Fig.
1�, each identical, save for being rotated ±2� /3 radians rela-
tive to one another. Where the substructures pass through one
another, we imagine them being joined or welded along their
curves of intersection. Each substructure consists of an infi-
nite set of parallel hollow right circular cylinders, with their
axes in the x-y plane, and placed so that each touches two
neighbors and is welded to each of its two neighbors along
these lines of contact �which also lie in the x-y plane�. We
specify all these welds so we can be sure that on deformation
at long length scales, the plate behaves as a single entity,
rather than separating into its constituent cylinders.

Each of the component cylinders has a radius r and a wall
thickness t�r. Because we have chosen the composite plate
to have sixfold rotational symmetry about the z axis, then on
long enough length scales the composite plate must behave
elastically as though it is isotropic under rotations about the
z axis. This is because to leading order, the elastic stiffness of
the plate under stretching and bending is represented by rank
4 tensors in two dimensions �which are contracted with two-
dimensional rank 2 deformation tensors to form the scalar
energy�. These rank 4 elastic tensors may be invariant under
rotation about the z axis �and so be consistent with any rota-
tion group Cn�, or may have one of the symmetry groups C2
or C4. However, the composite plate we have described has
the symmetry group C6, which is not consistent with C2 or
C4.
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Calculating the stretching and bending energies of the
composite plate shown in the bottom panel of Fig. 1 is non-
trivial even for the long-wavelength �much greater than r�
deformations in which we are interested. Indeed, obtaining
the correct numerical prefactors would require a finite ele-
ment calculation for the structure. Instead, and in order to
proceed rigorously and in an analytical manner, we make an
approximation which underestimates the stiffness �overesti-
mates the compliance� of the structure, so that we would end
up eventually with an upper bound on the minimum value of
v required for the final columns in the sections to follow.

The approximation we make is a “ghost approximation,”
in which we imagine that the cylinders composing the com-
posite plate of Fig. 1 are no longer welded together, but are
free to move past and indeed through one another; but all
follow the imposed deformation field.

Under this approximation, consider what happens to one
of the constituent cylinders when the composite plate is sub-
jected to an in-plane stretching deformation, represented by a
two-dimensional strain tensor e�x ,y� with principal compo-
nents e1 and e2. Let the cylinder be at an angle 	 relative to
the direction of the principal component e1. The cylinder will
then be stretched parallel to its symmetry axis with a strain


�	� = e1 cos2 	 + e2 sin2 	 . �10�

It may also rotate, but because of the ghost approximation, it
experiences no resistance to this motion.

Adding up the stretching energies for the three substruc-
tures, we find a lower bound for the total stretching energy of
the composite plate US,com given by

US,com �
�Yt

16
	 dxdy
3�Tr�e��2 + 6 Tr�e2�� . �11�

Consider next a single cylinder when the composite plate is
subjected to an out-of-plane bending deformation field
w�x ,y�, which is slowly varying in x and y �compared to the
cylinder radius�. If the cylinder is at an angle 	 to the x axis,
then it will have an out-of-plane curvature given by

��	� =
�2w

�x2 cos2 	 +
�2w

�x � y
sin 2	 +

�2w

�y2 sin2 	 . �12�

From thin-beam theory �11� it will therefore have an elastic
energy per unit length given by

u�	� =
1

2
Y�tr3���	��2. �13�

Adding up contributions from the three substructures, the
bending energy UB,com of the entire composite plate therefore
has a lower bound given by

UB,com �
3�Yr2t

32
	 dxdy
3�Tr�H��2 − 4 det�H�� . �14�

If we compare the lower bounds on elastic energy from
Eqs. �11� and �14� with those for a uniform plate �Eqs. �7�
and �8�� then we see that for long wavelength deformations,
the plate is at least as stiff as a uniform plate with effective
thickness, Young modulus and Poisson ratio given by

teff = �6r , �15�

Yeff =
�

�6
� t

r
�Y , �16�

�eff = 1/3. �17�

Furthermore, the composite plate uses an amount of
material per unit area given by

seff = 3�t . �18�

The results in Eqs. �15�–�17� provide us with the information
required to calculate lower limits on the stresses required to
produce buckling on length scales much larger than r. How-
ever, a composite plate of this kind can also fail through
local buckling by one or more of the constituent cylinders
undergoing a local buckling instability.

This can be dealt with analytically for an isolated cylin-
der, which is the result used above for local buckling of a
generation 1 structure �Eq. �3��. However, without an exten-
sive finite element study, covering a range of parameters, it is
much harder to provide a good lower bound on the in-plane
compressional stress required to excite these modes in the
composite plate. This is because the stresses in intersecting
cylinders could potentially generate buckling, rather than
having no effect �as in the ghost approximation� or suppress-
ing these modes.

FIG. 1. Bottom image is part of a composite plate, which is
constructed by merging the three substructures shown in the top
three images of the figure. Each substructure is an infinite set of
parallel right circular cylinders which are joined along their lines of
osculation. The three substructures are identical save for being ro-
tated by ±2� /3 radians relative to one another about an axis per-
pendicular to the plane. Each right circular cylinder has a radius r,
a wall thickness t�r, and is infinitely long.
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In what follows, we will make the simple, but not neces-
sarily accurate, approximation that, provided the largest
compressive principal stress component lies in the direction
of the axes of one of the substructures in the composite plate,
then we will get local buckling only under the same circum-
stances as for an isolated cylinder. This is also a kind of
“ghost” approximation, in that the role of the other parts of
the substructure are ignored, but although it is plausibly a
conservative approximation, it no longer provides a strict
bound on v.

III. GENERATION 2 STRUCTURE

Imagine taking the curved cylindrical shell which forms
the generation 1 structure of Sec. I and replacing the solid
curved shell with a composite plate similar to that in Fig. 1,
but curved to follow the original cylindrical surface. An ex-
ample is shown in the bottom image of Fig. 2, with the top
three images in the same figure showing the three substruc-
tures which are merged to form the final column; one of the
substructures has the axes of its constituent cylinders aligned
with the long axis of the column itself. We refer to the result
as a generation G=2 structure.

The length of the generation 2 structure is taken to be L,
and the radius of the entire column is r2,2. At the largest
scale, there is only ever one cylinder, and we represent this
trivial fact by n2,2=1. However, that substructure making up
the composite shell which has cylinders aligned with the
column length is composed of more than one cylinder, and

we denote this number by n2,1. For the structure in Fig. 2, we
have n2,1=12, as can be seen more clearly in the section
through the relevant substructure shown in Fig. 3.

The thickness of the thinnest shells, which make up the
cylinders of the composite shell is t2,1, and these have Young
modulus Y2,1�Y and Poisson ratio �2,1��. These shells
form the cylinders of the composite substructures, which
each have radius r2,1� t2,1. The resulting composite shell has
an effective elastic thickness t2,2, and effective Young modu-
lus and Poisson ratio given by Y2,2 and �2,2.

The geometrical terms are illustrated in Fig. 3, which for
clarity shows only a cross section through the substructure
which has its cylinders aligned with the axis of the entire
composite column. We note finally that in the case r2,1
�r2,2 then we can count the number of cylinders in this
substructure using

n2,1 = �r2,2/r2,1. �19�

Rather than analyzing the efficiency of the G=2 structure
here, we proceed directly to the general case in the following
section.

IV. GENERATION G STRUCTURE

To make the generation 3 structure, we imagine replacing
all the curved but solid shells in a generation 2 structure
�which are of uniform thickness t2,1� with composite shells,
as described for a flat plate in Sec. II.

The thinnest �solid� shells comprising this new structure
have a thickness of t3,1 and compose thin cylinders of radius
r3,1. These form the substructures of curved shells with ef-
fective elastic thickness t3,2. These curved shells form cylin-
ders of radius r3,2 which compose the substructures of a new
composite shell, which is of effective elastic thickness t3,3,
and from this final doubly composite shell, a hollow cylinder
of length L and radius r3,3 is formed, which is the final gen-
eration 3 structure.

FIG. 2. The bottom image is an example of a generation 2
structure or column, which consists of three intersecting substruc-
tures that are shown in the top three images. Each substructure is
composed of hollow cylindrical shells, with one substructure having
the cylinders aligned parallel to the long axis of the entire column,
and in the other two substructures the cylinders are wrapped in a
helical arrangement �left handed for one substructure and right
handed for the other�.

FIG. 3. Section through one of the substructures in Fig. 2, which
has the component hollow cylinders parallel to the axis of the entire
generation 2 structure. The figure shows definitions of various
lengths required to specify a generation 2 structure.
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By iterating this process, we end up with a generation G
structure. In general, rG,m is the radius of each of the �usually
composite� cylinders at hierarchical level m of the generation
G structure: rG,1 is the radius of the smallest �noncomposite�
cylinders and rG,G that of the multiply composite column
itself. Similarly tG,m is the effective elastic thickness of the
curved �and usually composite� shells making up the cylin-
ders at hierarchical level m in the generation G structure.

We assume that

tG,1 � rG,1 
 tG,2 � rG,2 
 ¯ 
 tG,G � rG,G � L �20�

and by definition we can say the following:

tG,1 � sG,1, �21�

YG,1 � Y , �22�

�G,1 � � . �23�

The material thickness of the different composite shells are
related to one another through Eq. �18� by

sG,m = 3�sG,m−1 �24�

and therefore the total �nondimensionalized� volume of ma-
terial used is given by

v�G� = 2�LrG,GsG,G/L3. �25�

The effective elastic properties for m� 
2, . . . ,G� are related
to one another in the ghost approximation �which gives an
upper bound on v� by results analogous to Eqs. �15�–�17� of
Sec. II; namely,

tG,m = �6rG,m−1, �26�

YG,m =
�

�6
� tG,m−1

rG,m−1
�YG,m−1, �27�

�G,m = 1/3. �28�

At the largest length scale �i.e., the column itself�, the
structure is subject to Euler buckling and therefore the larg-
est �nondimensionalized� force it can support is subject to the
constraint

f �
1

YL2

�2IGYG,G

L2 , �29�

where the relevant second moment of the cross-sectional area
about the neutral axis is given by

IG = �tG,GrG,G
3 . �30�

For the constraints due to localized buckling, we proceed as
follows: at the largest length scale, there is one �multiply
composite� cylinder aligned with the long axis of the col-
umn. This fact is captured by the equation nG,G=1.

At the other length scales, we count the number of smaller
cylinders in the substructures which are aligned with the long
axis of the entire column in the following recursive manner,
based on Eq. �19�:

nG,m−1 = �
rG,m

rG,m−1
nG,m, �31�

where m� 
2, . . . ,G�.
Each of these cylinders at a level m of the structure has a

shell with an effective elastic thickness of tG,m, effective
Young modulus YG,m, effective Poisson ratio �G,m and sup-
ports a force no more than

FG,m �
F

nG,m
, �32�

which we obtain by neglecting the support provided by the
other two helically arranged substructures at this level �and
so on recursively�.

As discussed in Sec. II we make the crude approximation
that the local buckling condition for a composite shell can be
obtained from that for the isolated cylinders composing it.
This again uses the ghost approximation, but in this case the
approximation no longer provides a strict bound. The result
is a sequence of conditions to avoid local buckling at each
hierarchical level in the structure, analogous to Eq. �3� and
given by

FG,m �
2�YG,mtG,m

2

�3�1 − �G,m
2 �

. �33�

We now proceed to solve the recursion relations of Eqs.
�21�–�24�, �26�–�28�, and �31�, keeping first of all tG,1 and
rG,m as parameters for optimization,

sG,m = �3��m−1tG,1, �34�

tG,m = �tG,1, m = 1,

�6rG,m−1, 2 � m � G ,
� �35�

YG,m = �Y , m = 1,

�m−1

�6
� tG,1

rG,m−1
�Y , 2 � m � G , � �36�

�G,m = �� , m = 1,

1/3, 2 � m � G ,
� �37�

TABLE I. Example calculation for the mass M of a structure
required to support F=10 kN over a distance of L=200 m when
the structure is made from a material similar to steel, with Y
=210GPa, �=0.29, and density �=8000kg m−3.

G M tG,1 rG,1 rG,2 rG,3

0 79 tonnes 12.5 cm

1 941 kg 0.12 mm 81 cm

2 319 kg 1.4 �m 1.2 mm 2.4 m

3 261 kg 63 nm 14 �m 8.2 mm 4.6 m
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nG,m = �G−mrG,G

rG,m
. �38�

The condition to be at the limit of Euler buckling
�Eq. �29�� therefore becomes

f =
�G+2

L4 rG,G
3 tG,1, �39�

the condition to be at the limit of local buckling at the small-
est scale of the structure is �from Eqs. �32�, �33�, and �38��

f =
2�G

L2�3�1 − �2�

rG,GtG,1
2

rG,1
, �40�

and to be at the limit of local buckling at the other levels in
the structure, gives �from Eqs. �32�, �33�, �38�, and �26�� for
2�m�G,

f =
3�G

L2

rG,m−1rG,GtG,1

rG,m
. �41�

Equations �25�, �34�, and �39�–�41� can be solved for G�1
to give finally

v�G� = 2�1+G�/�2+G�3�2G2−1�/�2�2+G����G−2�/�2+G�

��1 − �2�1/�2�2+G��f1−�1/�G+2��, �42�

tG,1

L
= 2−3/�2�2+G��3�9−6G�/�4�2+G���−�2G2−G+2�/�2�2+G��

��1 − �2�3/�4�2+G��f �1+2G�/�2�2+G��, �43�

rG,G

L
= 21/�2�2+G��3�2G−3�/�4�2+G���−�3G+2�/�2�2+G��

��1 − �2�−1/�4�2+G��f1/�2�2+G��, �44�

while for 1�m�G,

rG,m

L
= 2�2G−2m+1�/�2�2+G��3−�12G−14m+3�/�4�2+G��

��−�2G2−2Gm−G+4m+2�/�2�2+G��

��1 − �2�−�2G−2m+1�/�4�2+G��f �1−2m+2G�/�2�2+G��.

�45�

As a simple practical example, consider a strut of length L
=200 m which is required to support a force of F=10 kN,
and which is made from a model material, similar to steel,
with Y =210 GPa, �=0.29, and a density of 8000 kg m−3, so
that f =1.2�10−12.

A cable supporting this force under tension would require
a mass of 8 kg �assuming a yield stress for the material of
200 MPa, and neglecting the mass of couplings at the ends�.
The masses �M� of “steel” required for various structures
described in this paper are shown in Table I.

Last, we note that for a given value of f , several genera-
tions of structures may be compatible with the conditions of
Eq. �20�, as illustrated in Fig. 4. In the limit f →0, we can
calculate the envelope of these curves in order to obtain the

global optimally efficient structure within this class, through
solving �18�

v = v�G� , �46�

�v�G�
�G

= 0, �47�

where v�G� is given by Eq. �42�.
In the limit of small f , we can expand the exponent of Eq.

�46� in powers of 1 /G to obtain the asymptotic results

v �
2�f

9
exp�2��ln 3��ln f−1�� , �48�

G �� ln f−1

ln 3
. �49�

V. CONCLUSIONS

We have described compression members consisting of
intersecting curved shells in a fractal or hierarchical arrange-
ment which are highly mechanically efficient in the limit of
light compressional loading.

Fractal designs for efficient plates under gentle pressure
loading have recently been studied in Ref. �9�. In this work,
the fractal design arises from two competing tendencies in
the structure: First there is a geometrical feature of the plate
�narrow, tall spars� which when developed to extremes can
lead to very high mechanical efficiency. Second, there is a
limit to how far this feature may be developed, which is
ultimately a vulnerability to buckling. One spar can however
be used to provide partial support for another, and this leads
to the final hierarchical design.

The parallels with the problem of the present paper should
be apparent, and so we suspect that fractal forms may be a
general property of optimal elastic structures under gentle
and at least partially compressive loading.

At this stage, we are not able to frame a precise math-
ematical conjecture, and we do not know how other param-
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FIG. 4. Plot of log10�v� versus log10�f� for the optimal structures
with G=0,1 ,2 ,3 ,4 ,5 ,6, using Eq. �42� and �=0.29. The curves
are only drawn for the range of f where rG,G /L�1 /20,
rG,m /rG,m+1�1 /20, and tG,1 /rG,1�1 /20, which we take as an
approximation to the condition of Eq. �20�.
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eters will figure in the analysis. In previous work brittleness
�9� was important, and it seems highly probable that in the
present work, the amplitude of imperfections in either the
geometry or the uniformity of the loading could be crucial to
determining the mechanical efficiency �11,15�.

We therefore hope that further examples, and perhaps ul-
timately theorems, will shed light on a problem whose geo-
metrical solutions promise to be useful and even beautiful.

The author wishes to thank E. G. Pelan for allowing the
occasional freedom to take on problems which the author has
no hope of solving. The author also acknowledges the open
source community for some excellent software invaluable to
this work. For example, Figs. 1 and 2 were prepared using
the constructive solid geometry capabilities of “PovRay”
�http://www.povray.org� and Fig. 4 was prepared using
“Grace” �http://plasma-gate.weizmann.ac.il/Grace/�.
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